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Graphical representation of Slater determinants 
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Grudziadzka 5 ,  87-100 Torub, Poland 

Received 10 April 1985 

Abstract. Methods for a graphical representation of determinants are described in detail. 
Three different graphs are discussed and in each case an efficient graphical method of 
matrix element evaluation is given. The graphs store information about large determinantal 
basis sets in a very compact form and allow for some insight into the structure of such 
basis sets. A computer representation and some algorithms for the graphs are described 
in the appendices. 

1. Introduction 

In many branches of physics and theoretical chemistry the Schrodinger equation is 
solved in some finite-dimensional model space of N-electron functions. Methods that 
start from the orbital approximation are the most common. Many-electron antisym- 
metric wavefunctions are then usually represented as a linear combination of Slater 
determinants, although other choices, such as the use of Gelfand states (Paldus 1976, 
Shavitt 1983) or spin-adapted antisymmetrised products (Karwowski 1973, Duch and 
Karwowski 1982), are becoming increasingly popular. Slater determinants, forming a 
basis of the model space in which solutions of the Schrodinger equation are sought, 
have to be classified and matrix elements between these determinants, required by the 
method of solution employed, have to be calculated. 

It is the purpose of this paper to show how to describe large sets of determinants 
with the help of small graphs, how to visualise the structure of model spaces and how 
to calculate matrix elements using this graphical representation. In the next section 
the simplest two-slope graphical representation is presented and all the concepts and 
terminology introduced. This is followed by a section describing an application of the 
two-slope graph in matrix element calculations. This simple graph has one disadvan- 
tage: it describes determinants with different projections of a total spin quantum 
number M. Because functions with a fixed M number are desired in most methods 
two alternative graph forms are described and analysed in the subsequent sections, 
both corresponding to model spaces with a fixed M. The first of these graphs, the 
three-slope graph, describes orbital configurations, the distribution of (Y and p spin 
functions to form a spin-orbital configuration being described by a small, separate 
diagram. The second graph contains in itself the complete information and is therefore 
more complex: it has four slopes. However, some parts of these graphs are so simple 
that an explicit use of their structure becomes very efficient, as shown in 0 7. Finally, 
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after a brief summary two appendices describe the computer representation of a graph 
and some useful algorithms for searching the paths in a graph. 

It should be emphasised that graphical representation of Gelfand states or, more 
properly speaking, graphical representation of the so-called ‘distinct row table’, used 
by Shavitt, is very similar to the four-slope graph presented here (Shavitt 1977a, 1978, 
1983), the only difference coming from the fact that the intermediate M number for 
determinants may be negative while the intermediate spin quantum numbers S for 
Gelfand states are always positive. Many concepts related to the graphical representa- 
tion, as well as the terminology used, are therefore taken from Shavitt. However, 
Shavitt’s graph is usually presented in the context of the unitary group approach 
(Pladus 1976), the theory requiring much greater effort to understand than the simple 
considerations presented below. Recently the graphical representation of model spaces 
encountered in atomic and molecular physics calculations was developed into a general 
framework (Duch 1985), giving essentially the same results as the group-theoretical 
approaches by a simpler means. Some results obtained in this framework for deter- 
minants are presented here. 

2. Classification of determinants-the simplest approach 

In this section the idea and all concepts relevant to a graphical representation of 
N-electron determinantal basis sets are introduced. Determinants are built from spin 
orbitals which are designated in a standard way: pi for spin LY and c,Ei for p. A pair 
piqi appearing in a determinant is called a double, unpaired spin orbitals are called 
singles or singly occupied. For example, the ground state of water may be approximated 
by a determinant composed of five doubles: 11al%2a12a,l b Z l b 2 3 a l ~ l b l l b , ~ .  Taking 
this as a reference determinant we may specify excited determinants by writing occupied 
spin orbitals and their replacements, unoccupied in this reference, for example 
(lb,3a1 -+ 4a,2b,). As long as there is only one reference determinant and only single 
or double replacements are allowed it is easy to store the labels in such a form. 
However, things get more complicated for higher replacements and several reference 
determinants. 

A good and quite general method of labelling the determinants is to fix a sequence 
of spin orbitals-for example, according to the increasing orbital energies-and label 
a determinant by giving occupation numbers for all 2n spin orbitals. The determinant 
label is, in such a case, a bit pattern 110110010. . . with bits 2k - 1,2k telling us whether 
spin orbitals (Pk, I& are occupied in this determinant or not. One or two computer 
words are usually enough to store such a spin-orbital configuration. However, if a 
large number of determinants are used in a calculation the number of words used to 
store the labels is substantial. Moreover, although such a representation is completely 
general it does not give us much insight into the structure of our model space; for 
example, trying to find all determinants interacting (i.e. having non-zero matrix ele- 
ments) with a given one requires matching it with all the others. 

The bit patterns, or spin-orbital occupations, are represented in a convenient way 
on a grid. The first bit is 0 or 1, 0 represented by a short vertical line (arc) and 1 
represented by a skew line. Drawing our bit patterns for a number of determinants 
we end up with a graph of the kind shown in figure 1. 

A path, which is a collection of 2n  arcs through which one has to pass going from 
the top of the graph (head of the graph) to the bottom (tail of the graph), is equivalent 
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Figure 1. An example of a two-slope graph for 10 electrons and 14 orbitals (double-zeta 
basis for H20). Paths corresponding to the three reference determinants: 
jla:2a:lb:3a:lb:l, lla:2a:lbi3a:2b:I and ~ l a ~ 2 a ~ l b ~ 3 a , ~ , ~ 2 6 , ~ ~  are drawn in bold 
lines. 

to the bit pattern specifying the spin-orbital configuration. The points where the arcs 
connect are called vertices. It is obvious that all the paths reaching a given vertex vi, 
(shifted down i units and to the right j units) and coming from the head of the graph 
form a subgraph corresponding to j electrons distributed among i spin orbitals. 
Therefore the horizontal axis represents the number of electrons (or cumulative occupa- 
tion) and the vertical axis the number of spin orbitals. A graph drawn in such a way 
has a shape that depends on the ordering of spin orbitals. Only in the case of a full 
space, when all possible determinants that can be formed from a given set of 2n spin 
orbitals are taken as a basis, does the shape not depend on the spin-orbital sequence. 
In a more common case the many-electron basis (model space) is selected by making 
single, double or higher replacements of the spin orbitals in some selected reference 
determinants. Because the graph gives a global description of the determinantal basis 
set some paths in the graph may correspond to determinants that should not be included. 
One may choose the ordering of spin orbitals to keep the number of those unwanted 
paths in the graph to a minimum. Such ordering giving a minimal size of the graph, 
is achieved by placing at the top all those spin orbitals that appear as doubles in all 
reference determinants. These spin orbitals will be called d-type and the corresponding 
part of the graph the D part. A number of singly occupied spin orbitals appear in the 
reference determinants. These will be called active orbitals or a-type and the corre- 
sponding part of the graph the A part. The a- and d-types together are called internal 
spin orbitals and we have the internal part of the graph or the I part. Finally, orbitals 
that do not appear in any of the references are called virtual or external or e-type and 
the corresponding part of the graph the E part. 

Looking at figure 1, where single and double excitations from a set of three reference 
determinants are presented, we can easily recognise these parts by their characteristic 
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shapes. First we have the D part: an ‘arm’ formed by single and double excitations 
from d-type spin orbitals. At each level only three vertices are present because-in 
the case of double excitations-excited paths differ at most by two arcs from the 
reference paths, which are in this part represented by the rightmost line. Next comes 
a complicated, but usually rather small, A part. The reference paths are by definition 
occupied by all N electrons in the internal part. Therefore in the A part they have to 
reach the rightmost vertical path going to the tail of the graph. The external part again 
has a very simple structure, determined by the excitation level. In general, if the 
excitation level is k, excited paths must not differ from the reference paths by more 
than 2 k  arcs, i.e. to draw a shape of the graph one has to draw reference paths and, 
at each level, add k vertices to the left and to the right of each vertex crossed by the 
reference paths (of course, the number of electrons at each added vertex must stay 
between 0 and N).  The vertices connecting internal and external parts are called Eo, 
E,, EZ, . . . , depending on the number of electrons in the external part. The vertices 
connecting the D and A parts are called Do, D,, D2, .  . . , depending on the level of 
excitation of the internal paths in the D part. Because the structure of the D and E 
parts is always as simple as in the one reference case one can use this structure explicitly, 
representing graphically only the A part which bears all the complexity. 

Let us now ask: what can the graph be used for? Instead of a list of labels identifying 
determinants we can have a description of the graph that is much more compact. The 
graph shown in figure 1 has only 90 vertices and can be fully specified by less than 
300 numbers-and even that could be reduced by using the structure of D and E parts 
in an explicit way-but it describes 92966 determinants. We may develop some 
intuitions connected with the shape of the graph, for example, in the configuration- 
interaction method (Shavitt 1977b) one can estimate how ‘good’ our model space is, 
depending on the shape (Duch 1985). We will not explore this topic here because it 
depends on the particular method we want to work with. A compact description and 
visualisation of the corresponding structure of the model space are not the only 
advantages: computational efficiency comes next. Comparing the paths we can easily 
find the matrix element between corresponding determinants. However, first we will 
need a numbering scheme for the paths, a mapping of the bit patterns into natural 
numbers. 

Let us consider the vertex uB, corresponding to i spin orbitals and j electrons. How 
many paths reach this vertex from the head of the graph? This number, designated 
wg and called the weight of a vertex, is obviously equal to the sum of weights of the 
vertices at level i- 1 joined with uB. In our case each vertex is reached from one or 
two vertices belonging to the level above it. It is very easy to calculate the weights 
starting from the head (vertex uoo with weight fixed as 1) and proceeding to the tail 
(vertex u Z n N )  of the graph (figure 2 ( a ) ) .  The weight of the tail is equal to the total 
number of paths contained in the graph; in the same way the weight of a given vertex 
U,] is equal to the number of paths in a subgraph which has U, as its tail, has the same 
head and is embedded in the main graph. 

We could ask: how many j-electron determinants built from the first i spin orbitals 
are contained in our basis? It is quite easy to calculate if we know how many paths 
are contained in a subgraph with ul, as its head. This number, designated is simply 
the weight of a vertex calculated from a reversed graph, i.e. with the tail as its head 
(figure 2 ( b ) ) .  Multiplying wvi+lJ we find the number of determinants with j electrons 
occupying the first group of i spin orbitals and N - j  electrons occupying 2 n  - i spin 
orbitals. 
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Figure 2. Lexical (4) and reverse lexical ( b )  labelling of the vertices in a two-slope graph. 
The weight of an empty arc is always zero. The sum of the arc weights gives a lexical 
(reverse lexical) index of a path. 

Using the weights we can easily calculate, in a systematic way, a position of a given 
path among other paths of the graph. We will assign the weights to the arcs in such 
a way that the position of the path-called its lexical index and designated by mL, 
where L represents spin-orbit configurations-is given as a sum of the 2n arc weights 
for that path. Let the weight of an empty (vertical) arc always be zero. How to assign 
a weight to a skew arc? Let us imagine two paths, joined at some vertex U,, and 
identical below the ith level. We want the paths joining U, through a skew arc to have 
higher lexical indices than those joining it through an empty arc. To assure this let 
us assign the number of paths coming through an empty arc, i.e. w , - ~  ,, as the weight 
of an arc joining ul, with u , - , , - ~  (figure 2 ( a ) ) .  The highest contribution to mL from 
the paths coming through an empty arc is equal to w , - ~  while those coming through 
the skew arc contribute at least w , - ~ , .  This indexing scheme works not only for the 
whole graph. For each subgraph with the same head and vlI as its tail we obtain lexical 
indices from 0 to w,, - 1, with the highest (rightmost) path as 0 and the lowest (leftmost) 
path as wl, - 1. 

Some of the paths which are in the graph, even if it has minimal shape, may not 
correspond to the determinants we would like to use, either because they have the 
wrong symmetry or the level of excitation is higher than desired. The symmetry of 
the determinant is, in the case of point groups with one-dimensional representations, 
a product of the representations of the singly occupied orbitals. Treatment of degenerate 
representations of symmetry groups requires a combination of determinants and is 
beyond the scope of this paper. 

One can develop different schemes to remove unwanted paths by adding more 
dimensions (cf 0 4) to our graph, splitting the vertices, adding excitation level indices 
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to each vertex or complicating the graph in some other way, but the simplest and most 
flexible way to dispose of them without changing the graph itself is to introduce a 
double-level indexing scheme: the address of a given path with lexical index mL is 
stored as an entry in a vector-called the index vector-at position mL, i.e. I ( m L )  is 
the desired position of the spin-orbital configuration (function) L among other basis 
functions. In this way not only can we delete configurations, but also we can reorder 
them arbitrarily, for example according to the symmetry species in the internal part 
of the graph. 

3. Calculation of matrix elements using spin-orbital (two-slope) graph 

Using the graph and the indexing scheme described above we will find a matrix 
representation of the Hamiltonian in the model space described by the graph. Matrix 
elements of other types of operators are calculated in an analogous way. Any k-particle 
operator acting in our model space can be expressed as a combination of creation and 
anihilation operators, or as products of k ‘replacement’ operators 

replacing the spin orbital ‘pjr by ‘pia or, in the graph’s path, segment ( j 7 )  by segment 
( iu). 

We are concerned not so much with the method of matrix element calculation- 
Slater rules in this case-but rather with the whole organisation of the computation. 
The straightforward approach-checking each determinant against all the others in 
the list-is very inefficient. Using the graph we immediately see all paths (determinants) 
interacting with a given one: for two-particle operators interacting determinants can 
differ at most by two spin orbitals, i.e. 2 n  - 4  spin-orbital occupations should be 
identical. The two interacting paths have therefore at most four arcs that are not 
parallel, branching into empty and singly occupied arcs first and joining by singly 
occupied and an empty arc a number of levels below, thus forming a loop in the graph 
(figure 3). The non-parallel arcs of the two paths involved in a loop are called the 
loop segments. In the case of a four-segment loop only three different shapes are 
possible, and for the two-segment loop (determinants differing by one orbital) obviously 
only one shape is possible. For k-particle operators more than 2k-segment loops give 
vanishing matrix elements. Because each loop must contain the same number of 
expanding segments (increasing the distance between the paths) as contracting segments 
(decreasing this distance) the number of segments is always even. Using Slater rules 
(Slater 1968) we can easily calculate matrix elements for the three types of four-segment 
loops and for one type of a two-segment loop, as shown in figure 3. The path, designated 
by L in figure 3, always has a higher lexical index than the one designated by R. Thus 
the loops give a contribution to the lower triangle of the H matrix. Two distinct 
approaches may be taken to calculate the whole H matrix. First, we can fix one of 
the paths, say L, and create all the interacting loops, thus calculating a row of the 
matrix. This ‘matrix element driven’ approach requires an easy access to the integrals. 
The second approach starts from the integrals and therefore may be called ‘integral 
driven’ (cf Saunders and van Lenthe 1983). The integral labels i<j< k < l  (or i < j  
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Figure 3. Possible kinds of loops in a two-slope graph. The formulae for matrix elements 
(LIHIR) in cases ( a ) ,  ( b ) ,  ( c )  of the four-segments loops are: 

( a )  ( L I H I R ) = ~ L R I ( i j I I k ~ ) - ( i l l l J k ) }  
( b )  (LIHIR)= & ~ R { ( i j ~ ~ k l ) - ( i k ~ ~ ~ l ) }  ~ ~ ~ ( - l ) ' + ~ + ~ + '  
( c )  W H I R ) =  & ~ R { ~ j k l l j l ) - ( i l l l j k ) }  

where ( i j  11 k l )  = a(@,, O J ) + ( O k ,  &)(ij k l )  includes integration over the spin functions and r 
is the number of occupied spin orbitals (the N coordinate in the graph) in the path in 
which orbital i is occupied. The two-segment loop ( d )  corresponds to matrix element: 

for one-electron integrals) fix the levels of the graph where the loop segments are 
placed. For the three loop shapes shown in figure 3 three unique values of the matrix 
elements are found, using combinations of (ij I k l )  integrals. Each value of the matrix 
element appears in many places in the H matrix, as shown in figure 4. This allows for 
a compact representation of the matrix, with one value of matrix element and a series 
of addresses where this element appears. 

In some methods we may avoid construction of large matrices (like the H matrix 
in our model space), using the philosophy of the direct configuration-interaction 
method (Roos 1972, Roos and Siegbahn 1977) or the vector method (Hausman and 
Bender 1977), especially if the E part of the graph is relatively large and simple. 

At this point we know how to construct the graph (the computer representation is 
described in appendix l ) ,  how to calculate lexical indices of the paths and how to 
remove unwanted paths, how to form loops and calculate matrix elements. We have 
defined the language useful for different graphical representations of many-particle 
model spaces. Leaving aside details of the computational methods that may benefit 
from the use of the graph (details easily elaborated on for particular applications), we 
will try to improve the graph itself. The efficiency of the graphical representation 
depends on the number of paths deleted. The graph described so far has no restrictions 
on the M quantum number, thus describing determinants with all possible projections 
of total spin. Although such graphs are of some use (Esser 1984) the number of 
unwanted paths is too high to be able to remove them efficiently with the help of an 
index vector (many loops created in the graph have to be discarded because one of 
the paths has the wrong M ) .  Therefore a modification of the graph to describe model 
spaces with fixed M number is desired. 
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Figure 4. Example of four-segment loops giving the same value of matrix element, the 
value uniquely determined by the i, j ,  k, I levels where non-parallel loop segments (drawn 
with bold lines) are placed. It does not depend on the connections between the segments 
(except for a sign change). 

4. Improved graphs for determinants 

Looking a! the graph in figure 1 one is first tempted to place all the orbitals with spin 
P at the bottom with spin a orbitals at the top. We will obtain in this way two graphs 
joined by one vertex, containing the paths with fixed number of a- and P-type spin 
orbitals, i.e. fixed M (figure 5 ) .  However, it is not possible to draw this graph in such 
a way that automatically excludes a large number of paths being excited higher than 
specified, If k-fold excitation is desired and in the a part of the graph 2-fold excitation 
was performed, the ( k  - /)-fold excited P graph should be attached to it. Additional 
complications arise with explicit separation of the E part and with an indexing of the 
paths. Such an approach is not elegant enough and although it may be computationally 
useful (Wasilewski 1984) it is not elaborated on here. 

We will follow another route instead. We have used an excited configuration of 
water, ( lb ,3a ,  + 4a,=) = l l a l K 2 a 2 2 a , l  b24a,2b,3a,l b,%l. Let us now ask: how 
many different determinants can we build from the same orbitals by permuting all a 
and P spin functions? In other words: how many spin-orbital configurations can we 
associate with a given orbital configuration? Obviously, changing spin distribution 
among doubles we get either zero (if the two identical orbitals appear with the same 
spin function, like in l l a 1 l a , 2 a , ~ .  . .I) or a change of sign (if we change the order 
within doubles, like in I l a , l a l . .  . I ) .  Therefore it is enough to consider permutations 
of spin functions among singles only. How do we classify determinants associated 
with the same orbital configuration? In our example, omitting doubles we have four 
spin functions, two of a and two of P type. A simple graphical way to classify them 
(Pauncz 1979) is shown in figure 6 .  The horizontal axis shows the value of the projection 
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Figure S. The graph of figure 1 with a- and /3-type spin orbitals separated. 
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Figure 6. Example of the M diagram clasi ing distribution of the a an B spin functions 
among singly occupied orbitals of a configuration with M = 0 containing four singles (full 
lines) or six singles (broken lines). 

of spin, i.e. M number, and the vertical axis the number of spin functions. This type 
of graph, topologically equivalent to spin-orbital graphs described in the previous 
section, will be called the M diagram. Each path in the M diagram represents a 
certain distribution of spin functions a and p among singly occupied orbitals, for 
example the rightmost path corresponds to I . .  . lb23a,4a,2b2. .  . I  and the leftmost to 

We want to expand this picture to include all n orbitals, and also the unoccupied 
and doubly occupied ones. Two things should be represented: the number of electrons 
as a function of the number of orbitals, as shown before in figure 1, and the intermediate 

-- 
-- I . .  . lb23U14U22b2.. . I .  



3292 W Duch 

M values, as shown in figure 6. Straightforward generalisation of these two graphs 
leads to a three-dimensional structure, shown from the front and from the side in 
figure 7, where four electrons are distributed in six orbitals. Looking at the graph from 
the front we cannot distinguish between empty and doubly occupied orbitals, because 
they contribute nothing to the M values. Looking from the side we cannot see the 
difference between a- and P-type orbitals. Two consecutive singles, one of a and one 
of p type, do not change the value of M and may be replaced by an empty and a 
doubly occupied orbital (occupations 0,2 or 2,0), as shown in figure 6 ( b ) .  Notice that 
now the graph has only n levels, not 2n as before. The projections are quite easy to 
draw, and although we do not draw the three-dimensional graph itself, one can represent 
it in a rather straightforward way on a computer. However, computational efficiency 
should not be the only reason to use the graph. Equally important is a visualisation, 
an insight into the structure of the model space. 

M 
1 0 1 2 3  

M N , Electrons 
! , L 

6 \ 

Figure 7. Two perpendicular projections of a three-dimensional graph. 
(a )  Front view. The M axis lies in the plane of the drawing and the N axis is perpendicular 
to this plane. Vertical lines represent empty or doubly occupied orbitals (no difference is 
seen from this direction), lines with decreasing M represent @-type singles, lines with 
increasing M represent a-type singles. 
( b )  Side view. The M axis is now perpendicular to the plane; no difference is seen between 
the a- and @-type singles. 

Looking closer at figure 7 we find that the side projection contains physically more 
relevant information. It describes our model space in terms of the orbital configurations. 
Groups of determinants associated with each configuration are ordered by means of 
the M diagram. The arcs of the orbital configuration graphs have three slopes (occupa- 
tions 0, 1 and 2) which makes its structure considerably more complicated than a 
simple two-slope graph. In figure 8 the graph of figure 1 is represented as the graph 
of orbital configurations. Although the structure of the three-slope graph is more 
complicated it is smaller than its two-slope version. It has n rows instead of 2 n  rows 
and contains fewer unwanted paths. Each path is connected with a group of 

determinants, where s is the number of singles in the path. 
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Figure 8. The graph of figure 1 as a three-slope graph. 

All concepts, described in the previous sections, may immediately be generalised 
to the three-slope, or even to a more general p-slope, graphs. The double indexing 
scheme is now necessary: from a lexical index of the path in the graph we find, using 
an index vector, the address of the first of d(M, s) determinants associated with this 
path. Lexical indices are calculated with the help of the arc weights, with the empty 
and singly occupied arc weights defined similarly to the two-slope case. A doubly 
occupied arc connecting the ui-lj-2 with uij vertex has a weight equal to the number 
of paths reaching uo through the singly occupied and the empty arc, i.e. wi-lj-l  + wi-lj  
(if ui-,j-l and vertices do not belong to the graph, their weight is zero). This is 
analogous to the definition of a singly occupied arc weight. An example of a computer 
representation of the three-slope graph is described in appendix 1. 

In the next section we shall turn to the problem of matrix element evaluation with 
the help of a graph. To calculate the whole matrix the same strategies as described 
in the previous section are applicable, but calculation of the matrix elements in this 
case is rather different. 

5. Calculation of matrix elements using a three-slope graph 

Let us designate a matrix element by (LIHIR), where L and R stand for orbital 
occupations or the paths in the three-slope graph. If sL singles is present in L and sR 
in R this matrix element is in fact a block of d(M, sL) by d(M, sR) elements. The 
operator H is an arbitrary one- and two-electron operator of the Hamiltonian type. 
The general form of such an operator is 

N N 

H =  C L,(r)+ L2(r, s). 
r = l  r < r = 2  
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We can distinghish three cases: L = R, L and R differ by one orbital, and L differs 
from R by two orbitals. Each case is treated separately. 

5.1. Identical conjigurations 

The formula in this case contains a strictly diagonal part, as well as the rest of the 
d ( M ,  sL) by d ( M ,  sL) matrix. The off-diagonal elements, when shown as loops in the 
two-slope graph, correspond to cases ( a )  and ( b )  in figure 3, with qj = qi and rp, = (Pk. 
Because the orbitals are the same, only the spin functions differ. The paths do not 
split in the three-slope graph, but they split in the M diagram (figure 6). The formula 
has a scalar part, common to all diagonal elements, and a matrix part K: 

where I is the unit matrix and K is a symmetric matrix of exchange integrals. Let us 
designate by T the position of orbital i among singles (e.g. if L = 2221 11 1000, for i = 5 
we have r = 2 ) .  The K ,  integral is added to the K,,  element if, exchanging segments 
i w i t h j  in the M-diagram path number rn, path number 1 is obtained. To calculate 
the - mth row (or column) we act on the M-diagram path Im), starting with 7=1,  
j = 2 , 3 ,  . . . ,  s,. to i = s  - -1 , j =  - sL, each time adding K,, to the column (row) 
11) = ( i ) l m ) .  For example, for the configuration L = 2221 11 1000 row 11) = I+ + - -), 
where + stands for a and - for p type arc in the M diagram, the following six elements 
are created in the first row and column of the K matrix: ( K45 + K6,, K56, K46, K5, ,  K4,, 0). 

It is easy to organise the computation of diagonal matrix elements in such a way 
that only a small part of the formula has to be recomputed each time the path L is 
changed. 

5.2. One orbital difference 

There are N - 1 identically occupied spin orbitals in the two determinants involved in 
the matrix element. Let us designate by i and j ,  i < j ,  the orbital which is different in 
R and L. In the three-slope graph the two paths are identical between the head and 
the level i - 1. At the level i they diverge; a segment of a loop that is formed has 
occupations 10 11 or 11 21. The paths run parallel down to the level j -  1 and at the 
level j  are closed by the 11 01 or 12 11 segment. Thus four different two-segment loop 
structures are possible (figure 7): 1: AI, 1; :I, 1: and 1: :I, the upper segment belonging 
to the level i, lower to j .  In each case orbital j has greater occupation in the L (left) 
path, the path with a higher lexical index than the R (right) path. 

We should place orbital i at the same position as j ,  so that identical spin orbitals 
will occupy the same N - 1 positions in L as in R. We can shift orbitals in one of the 
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configurations, applying a cyclic permutation, but it is simpler to shift i and j orbitals 
to the first first position of both L and R. The four cases mentioned above lead to the 
following types of elements: ( j . .  . I H l i . .  .), ( j j . .  . lH l i j , ,  ,), (ij.. . I H ( i i . .  .) and 
( i j j . .  . l H / i i j .  . .). For simplicity spin labels are omitted here; orbitals at the same 
positions must have the same spin functions, otherwise the element is zero. The phase 
factor coming from the shift of columns in the corresponding determinants is equal 
to (-1)’+’~,,  where E ,  depends on the loop structure. In the first case E, = 1. In the 
second case, shifting of the jj pair may introduce a.change of sign only if the CY, p 
order of spin orbitals is reversed inside the pair-this ‘inner’ parity is designated further 
by &,-and shifting of i and j in R introduces -(-1) ‘+7, so that E ,  = -E,.  In the third 
case we have E ,  = - E ,  similarly. The fourth case gives E ,  = -1 because the second 
orbital-j in L and i in R-must have the same spin function in both determinants, 
so that the inner parity of i i  and jj has to be opposite and, as a result, 

Calculation of the phase factors may also easily be done segment-wise: segments 
of the type 10 11 or 11 01 always contribute +1, while those of the type 11 21 and 12-11 
contribute -E,,, where p is the level at which these segments are placed. The 
factor replaces the need to count segments other than i and j. We can now write the 
formula for a block of matrix elements associated with the two orbital configurations: 

= -1. 

where n k  = min( nk, n:) and the non-zero elements of d ( M ,  sL) by d ( M ,  sR) matrices 
ILR and K L R  are defined as 

1 = Y (  PL f )  r = ~ ( P , J )  

k t i j  

where f is one of the M-diagram paths, identical for L and R, corresponding to th,e 
singles in the configurations with all i and j orbitals shifted to the first positions; PL 
and FR simply shift i and j back to their original positions i and J in L and R: Y ( f ’ )  
gives a lexical index of the M-diagram path f ’ ,  and S (  e,, 0,) vanishes unless the spin 
function Ok of orbital k is the same as e,, where j is the ‘different’ orbital in L placed 
against i in R. 

As an example let us calculate the I L R  and K L R  matrices for L=222111100 and 
R =  222121000. Comparing the two occupation patterns we find the loop structure 1 ;  
with i = 5 ,  j = 7  and ?=2 ,  ;=4. The transformed element (LIHIR)=(ij. . . I H ( i i . .  .) 
has (-1) ’+;= +1 and E ,  = - E ! .  There are four common M-diagram paths f possible 
in this case: rows 1 are obtained by shifting i, j from the first and second position to 
T =  2, J =  4 in L and columns r by dropping the first two symbols in the f path. Using 
the M diagram we can easily convert the path’s symbols into numbers: 

R: 
L: 

E,:  -1 

1 

. .  
[ I  

i j 4 6  
+ - + -  
+ - -  + 
- + + -  
- + - +  

L: i = 2  
- 2  

j = 4  

4 i 6 j  
+ + - -  
- + + + -1 = [;I + - -  

+ +  - -  
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J L R =  

- 
- 1  

0 
0 

0 
- 0  

W Duch 

No more than two non-zero entries in each column (or row) are possible for matrix 
elements between configurations differing by one orbital. 

5.3. Two orbitals diferent 

Three subcases exist here, corresponding to loops with two, three or four segments. 
(i)  Two-segment loops: the two determinants differ by one pair of orbitals, so that 

(L/ HI R) = ( j j  , . , I  HI ii . . . ) = ( i j  I i j )  I (7)  

where I is a d(M, sL)-dimensional unit matrix. In the graph the loop structure is 1; :I. 
(ii) Three-segment loops: one of the two configurations contains a double which 

is not present in the other, i.e. a segment 10 21 or 12 01 appears. As usual, configuration 
L is the one with greater lexical index. Suppose that 10 21 is the highest segment of 
our loop structure. Each of the two segments needed to complete the three-segment 
loop is of 11 01 or 12 11 type, giving four different structures. The segment 10 21 may 
also appear in the middle, giving another four structures. However, putting this segment 
as the lowest would make the lexical index of L lower than that of R. Therefore 12 01 
should be taken as the bottom segment, and consequently the other segments are 10 11 
or 11 21. Thus a total of 12 different loop structures are possible in this case. Let us 
designate the orbital corresponding to the 10 21 or 12 01 level as d and the remaining 
two p and q, p < q. The formula is then: 

(LIHIR)= -(-l)”+”(pd )qd)lLR (8) 

if one 10 1 )  or 11 01 segment is present I‘ &d otherwise I L R ( ~  r )  = 

with I ,  r indices defined as in (6).  
(ii) Four-segment loops: the four levels are designated i < j < k < 1. Thre: different 

two-electron integrals may be formed in the case of a symmetric operator h, and real 
orbitals: 

J1  = ( i j l k l )  J2 = (il Ijk) ~ ~ = ( i k l j f ) .  

In 0 5.2 we have identified four two-segment loop types, with the phase factors 
(-,I);+? E,. We can combine two-segment loops at levels i, j with the two-segment 
loops at levels k, l in the two ways, as is shown in figures 3 ( a )  and (b).  There are 
4 x 4 = 16 loop structures in each case and the ‘open’ loops, like those in figure 3(c), 
add another 16, so there is a total of 48 loop structures. A different combination of 
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- 
2 
1 
4 
3 
6 
5, 

integrals corresponds to each kind of loop: 

-4 - + + -  
+ - + -  

+ +  
+ + - -  
- + - +  
+ - - +  

- -  

where is a common factor due to reordering of orbitals to the first positions in the 
L and R determinants, and the elements of lER are zero or equal to E,, the product of 
inner parities of doubles involved in the loop structure. We may simplify this product 
noting that = &k&/ = - 1  for l L R ,  because I tR is multiplied by ( i j  I k l )  integral and, 
because i and j (or k and I )  are both doubles, the second i orbital must have the same 
spin function as the first j orbital in the opposite determinant, so that q, (q )q , (q+  1 )  
in the first determinant corresponds to qJ(q  + l ) q J ( q  + 2 )  in the second, giving E,&, = - 1 .  
For I;, matrices the same argument leads to Elel = &J&k = - 1 ,  and for I:, to &,&k = EJEf = 
-1. Thus E ,  is a product of all Ed, where d is the level at which the 12 11 or 11 21 
segment is present, with some of the Ed&,' = -1. Moreover, the single and double arcs 
joined in one vertex form 11 21 or 12 11 segments contributing - E d ,  while those disjoined 
contribute + & d ,  as shown in table 1 .  

The non-zero elements of ICR matrices, equal to E,,,, are determined using the same 
method as in the previous subsection, i.e. we take a common spin pathf, corresponding 
to the determinants with i, j ,  k, 1 orbitals shifted to the first positions and reordered 
SO that i is placed against j for ItR, or against 1 for ItR, or against k for ItR, and shift 
the orbitals back to their original i, j ,  k, 1 positions. As a result the M-diagram paths 
are obtained; after removing the symbols corresponding to doubles, lexical indices of 
the paths are calculated from the M diagram. This procedure is illustrated here by 
an example: 

- - 

structure of I ~ R :  E, = E , ( - & ! )  = + I  

R: 
L: 

E,: 1 

common 
paths 

i j j l  
k j  1 1  
+ + - + - -  
+ - + - + -  

- +  
- + - + + -  

- +  
+ - + +  - -  

R: ; = I  

1 = 3  
- 2  

L: j = 2  

E = 3  
- 2  

Z 1 
+ - + -  
+ + - -  
+ - -  + 
- + + -  

+ +  
- + - +  

i k  

- -  
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E,:  -1 

common 
paths 

+ 1 +  

- + + - - + -  
- +  

- -  + + + -  
- +  

- + - + - 
- +  

- + - + + -  
- +  

I 

R: T = 1  
-3 

i=3 

L: J7=2 

i = 3  
-9 

+ + - -  
+ - - +  
- + + -  

+ +  
+ + - -  
+ - -  + 
- + + -  

+ +  
+ + - -  
- + - +  
+ - + -  

+ +  
+ - + -  

+ +  
+ + - -  
- + - +  

- -  

- -  

- -  

- -  

1 
4 
3 
6 
1 
4 
3 
6 

1 
5 
2 
6 
2 
6 
1 
5 

Table 1. Phase factors for the three-slope graph, two- and four-segment loops. Segments 
10 11 or 11 01: always + 1 ;  10 21 or 12 01: always - E ~  

A e ( p )  -2  - 1  0 1 2 

~~~ ~~~~ 

The left arc of the segment reaches vertex ( p .  N,), and the right arc reaches vertex ( p ,  NR). 
A e (  p )  = NR - N,; E is the inner panty of a doubly occupied orbital p ,  i.e. for i p  ordering 
it is +1 and for i p  it is -1.  + P  

where the symbol [ 1,3 ,0 ,0 ,4 ,6]  designates a matrix with non-zero elements equal to 
+1 in column 1, row 1, 3 in row 2, 4 in row 5, 6 in row 6, and zeros everywhere in 
rows 3 and 4. The number of non-zero elements per column (row) in the l L R  matrices 
is, at most, 4, so they can be represented in a compact way. The symbols of the 
M-diagram paths in R and L are obtained from those of the common paths by reordering 
and removing the symbols corresponding to doubles. Actually there is no need to 
create these symbols; it is enough to know the reordering and use the common path 
symbols to read off the M-diagram arc weights. For example, to get the R paths 
written above we have to use symbols 1 ,  5 ,  4, 6 of the common paths. Although there 
may be sL + 2 or sL + 4 symbols in a common path, omitting the doubles M diagram 
for sL singles is always used. 
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Matrix elements of the same value (up to a phase) appear for all 16 loop structures 
corresponding to equation 9( a )  (similarly 9( b )  or 9( c)) ,  no matter where we place the 
segments in the graph and how the four loop levels are connected. The structure of 
ItR matrices depends on the positions i ,  j ,  k, I ,  i.e. it is changed only if the number of 
singles between the loop levels is changed. The graph allows us to find all matrix 
elements that are equal and thus to use the structure of our model space in the most 
complete way (figure 4). 

The last remark of this section is addressed to those who know some group theory. 
The matrices ItR depend on the permutation placing identical orbitals in L and R 
against each other. In fact, they form a reducible representation of the permutation 
group. The reducibility comes from the fact that, for spin-independent operators, not 
only M, but also S, the total value of the spin, is a good quantum number. Thus six 
determinants associated with a configuration with four singles are transformed to two 
singlet, three triplet and one quintet combinations (2 + 3 + 1 = 6), or twenty determinants 
for six singles into five singlets, nine triplets, five quintets and one septet ( 5  + 9 + 5 + 1 = 
20), etc. One can easily find the transformation replacing I f R  by the matrices corre- 
sponding to the desired spin subspace (Duch 1985). However, such considerations 
would lead us too far from the main subject of this paper. 

6. The four-slope graph 

There is another way of projecting the three-dimensional graph on a plane: instead of 
taking exactly perpendicular projections (figures 7 and 8)  we will shift our point of 
view to see the difference between a- and P-type singles. As a result four different 
arc slopes are seen in the projected graph, depending on the occupation numbers and 
the spin function types of the orbitals (figure 9). We may choose our point of view 
in such a way that the arc slope for a-type single (designated by 1) is steeper than the 
slope +- for P-type single (designated by i). Although two cp+nsecutive arcs of the type 
11 or ii reach the same vertex as the 02 or 20 arcs, the arcs 11 and Ti do not. Therefore 
the simple interpretation of the horizontal axis as the number of electrons cannot be 
preserved. Each vertex has a uniquely specified M '  value. For the vertices with M '  = 0 
we can draw a horizontal axis with the number of electrons N' = 0, 2, 4, . . . , while for 
the adjacent vertices with M '  # 0 the paths reaching them contain N ' +  M '  electrons. 

The path in a four-slope graph contains n arcs and describes the spin-orbital 
configuration. All concepts described in the previous sections for the two-slope and 
three-slope graphs are immediately extended to the four-slope case. The picture of 
our model space, although not as clear as in the three-slope case, is still informative. 
There is no hidden level of complexity. Therefore with the four-slope graph it is easy 
to define the excitations relative to a given determinant or to remove individually 
selected determinants, both tasks demanding some tricks when the oribtal configur- 
ations are used. Moreover, the calculation of matrix elements using the four-slope 
graph is very simple and the strucutre of the model space may be used as effectively 
as in the previous case. 

Although the number of different structures of two-, three- and four-segment loops 
is rather high in the present case-for example, each of the loops of figure 3, without 
doubly occupied arcs, come in six versions when a and P singles are differentiated-we 
may easily obtain the phases of matrix elements by assigning sig5s to the segments of 
a loop. Let t ,  be the type of an arc i in a given path, i.e. t ,  = 0, 1, i, 2. The formula 
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Figure 9. The graph of figure 1 as a four-slope graph 

for diagonal matrix elements now reads: 

Consider now the case of one spin orbital different in each path, say j in L and i in 
R, i < j .  The formula is 

where are signs defined for the loop segments (see table 2) ,  and nk = min(n:, nf). 
Some subtleties arise if there are two different spin orbitals in each path. Let us 

say that orbitals i < k, belonging to L, are different from j < 1 belonging to R. This 
time i, j ,  k, 1 levels are not necessarily in top-down sequence. The general formula is 
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Table 2. Jha_se factors for the foyr;slope giaph. Segme+nts 10 _01,-12 21.10 21, 12 Ol,!O il, 
( 1  O(,+lO 11, 11 Ol~always + I .  € ( / I  1 1 )  = 11) = €(I1 11) = €11 111, € ( / I  21) = -€(I1 21); 
&(I2 11)=-€(12 11). 

he -2 -1 0 1 2 

+1 -1 +1 -1 + l  
- +1 -1 +1 -1 
-1 +1 -1 +1 - 

I! i l  
11 ?I 
12 11 

with signs given in table 2.  Each loop consists of a maximum of four non-parallel 
segmeFts, HowevTr, there are four segments that count as a double segment: 12 01, 
10 21,Il 11 and li 11. The second pair appear when the same orbital, but with a different 
spin function, appears in the opposite determinant. The loops involving these segments 
are of two- or three-segment type, For  example, the off-diagonal parts of the formula 
(4) correspond to the loop type I;! f l .  

Calculation of the whole matrix proceeds exactly in the same way as described in 
the previous sections. The loops giving non-zero elements are formed in the graph in 
some systematic manner; fixing one of the paths and making all other paths interact 
with it, or fixing the levels on which the non-parallel segments are placed, the levels 
corresponding to integral indices. In the second case the structure of the matrix may 
be effectively used to store it in a compact way. 

7. D and E parts of the graph 

In figures 1, 8 and 9 we see that the D and E parts of the graph have an especially 
simple structure. When these parts are large it is worthwhile to ask: how can we benefit 
from this simplicity? We have already noticed that fixing the levels corresponding to 
the integral indices we find a large number of matrix elements equal up to a phase (cf 
figure 4). This is true for the majority of matrix elements with L and R configurations 
differing by two orbitals; if they differ by one orbital only partial matrix elements can 
be formed and treated in the same way. For example, we may find all matrix elements 
in which an ( i  I j )  integral or a combination of 2( ij I k k )  - (ik Ijk) integrals appear. In 
any case we have one value of matrix element and a whole set {mL, mR} of pairs of 
numbers-positions of this element in the matrix. Storing a matrix in such a form 
already saves us space. However, when the E or D part is particularly simple, one 
can devise a labelling scheme for the paths in such a way that the numbers mL and 
t n R  are regularly spaced in the set {mL, mR}. 

To be more specific, consider the case of a three-slope graph with a large E part 
occupied by no more than two electrons. Let us number the external orbitals from 1 
to nE, and designate by L and R the internal part of the two paths making a loop. 
The paths passing through the Eo vertex (cf figure 1) are fully characterised by their 
internal paths labels: those passing through El or E2 require, in addition, labels of the 
occupied external orbitals for a full description. The index vector may be defined 
separately for each vertex Ek using the recursive definition: 

Io(mL,) = Io(mL)  + d ( M  SL)  Io( 1’) = 0 

I1 ( 1 ’) = KO I ,  ( mL,) = I ,  ( mL) + d ( M ,  SL + 1 ) * nE 
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I : (  m,,) = I : (  m,) + d (  M, sL) . nE I:(  1') = K ,  

where L' is the next accepted path after L, Ik  is the index vector for the paths reaching 
the Ek  vertex, and the two kinds of index vectors for the E2 vertex are for the paths 
with one external double ( I : )  and two external singles ( I ; ) .  Each index vector has as 
its lowest value (i.e. for the first accepted path, designated by 1') the total number of 
paths already numbered. For example, K ,  is equal to the number of paths crossing 
Eo, E, and  E2 with one external double. Using these index vectors we can calculate 
the addresses A(L;. . . .) of the groups of determinants associated with a given configur- 
ation ( L ; .  . .): 

A(L) = MmL) 

A( L; a )  = I ,  ( m , )  + ( a  - 1) d ( M ,  sL + 1) 

A(L;  a, a ) = I : ( m L ) + ( a - l ) d ( M , s L )  

+min(a,  b)-1 d(M,sL+2). I A( L; a, 6 )  = I : (  mL) + 

This addressing scheme groups together all determinants differing only in the external 
orbitals. Elements of the type (L; alHIR; a )  are now represented in a very compact 
way by giving first a block d (  M,  s,+ 1) by d ( M ,  sR+ 1) of matrix elements, and a set 
of internal space contributions { I , (  mL), I , (  mR)} to the final addresses of this block in 
the H matrix. If the number of {L, R} pairs is K and there are D non-zero matrix 
elements in the block, K + D computer words are used to represent Kn,D elements. 
Similar or even greater savings can be made for the case of elements (L; aalHIR;  aa) 
and (L; a, blHIR; a, b). 

Suppose now that the loop is formed entirely in the external part, i.e. matrix 
elements are of the (L; a, bIHIL; c, d )  type. This time we may calculate the external 
part contribution to the addresses and run over all internal paths L joining the E2 
vertex, calculating I:(mL). The structure of the matrix element block depends only 
on the value of sL in this case. Therefore it is convenient to calculate the I ;  index 
vector in such a way that the internal path contributions for the paths with a fixed 
number of singles come consecutively. 

In the mixed cases, when one, two or three loop levels belong to the external, and  
the remaining loop levels to the internal part of the graph, it is rather hard to get the 
I-part contributions with regular spacings. Then only the E part can be used efficiently. 
Most of the elements with one external loop index are of the type (L;  a, bIHIR; b). 
The structure of this type of matrix element depends on sL, sR and the relation between 
a and b, but not on the value of b. Spin paths corresponding to the configuration 
(L ;  a, 6 )  with a < b, a = b and a > b differ; when b is lowered until a < b is changed 
to a > b the spin functions with (+ +) or (- -) as the last two segments are not affected, 
but those with (+ -) are changed to ( -  +) and vice versa. Due to the nature of lexical 
ordering of the spin paths, first come the d ( M + 2 ,  sL) functions with the last two 
segments(--),thend(M,s,)with(+-),d(M,s,) wi th ( -+ )and the la s t  d(M-2 , sL)  
functions with (++), so that rows d ( M + 2 ,  sL)+ 1 to d ( M + 2 ,  sL)+d(M, sL) are 
changed with rows d ( M + 2 ,  sL)+d(M, s L ) + l  to d ( M + 2 ,  sL)+2d(M, sL) when b 
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becomes lower than a. Again, from one block with D non-zero matrix elements, and 
a set of K pairs {L, R}, we obtain Kn,D elements. 

In the case of two external indices in a loop most elements are of the 
(L; a, cJH/R;  b, c) type, a >  b. Here inequalities c>  a, b; a >  c>  b;  a, b >  c lead, 
similarly to the previous case, to the reordering of columns and rows inside the 
d ( M ,  sL + 2) by d (  M, sR + 2) dimensional block of matrix elements. Moreover, two 
kinds of loops (figures 3 ( a )  and (b) )  are easily taken into account by taking the 
(L; b, cJHIR; a, c) element. Unfortunately a compact representation of the numerous 
(L; a, blHIR; c) matrix elements is rather difficult, but even here, depending on the 
position of the loop segment in the I part, the internal contributions from {L, R} change 
in a rather regular way. 

It is clear that the graphical representation not only allows for the rapid evaluation 
of matrix elements, but also gives us an insight into the structure of the matrix reflecting 
the structure of the model space described by a graph, so that the whole matrix 
representative of an operator is represented in this space in a very compact form. The 
‘seed’ matrix element blocks are placed in the proper places in the final matrix by a 
small routine recreating the addresses of the configuration pairs. When the three-slope 
graph is used there is a degree of freedom associated with the order of spin paths, i.e. 
the order of determinants connected with an orbital configuration, and, using the index 
vector, also in the order of internal contributions to the path addresses. The two-level 
addressing described here may not be optimal in some cases-more complicated 
three-level addressing schemes, with separate addressing in the D, A and E parts, may 
then be used. Elaboration of details is rather straightforward and depends on the 
particular method of calculation we want to use. 

8. Summary 

In this paper I have tried to introduce in a simple way some concepts related to the 
graphical representation of the many-electron model spaces with determinants used 
as basis functions. My intention was to indicate possibilities rather than to exhaust 
the subject: not only are other graphical representations of determinants possible, but 
graphs representing eigenfunctions of spin or angular momentum operator eigenfunc- 
tions were also found to be useful (Duch 1985). For pedagogical reasons it is convenient 
to first introduce the simplest, two-slope graph, shown in figure 1. Such a graph was 
recently used in relativistic configuration-interaction calculations (Esser 1984). 
However, if M is a good quantum number the graph has to be changed. The simplest 
modification involves separation of a- and P-type spin orbitals, as shown in figure 5 .  
This arrangement was used by Wasilewski in his configuration-interaction ( CI)  program 
(Wasilewski 1984). It is also implicit in the paper by Knowles and Handy (1984) on 
the full CI method, although, due to the high symmetry of a full space, the explicit 
graphical representation was not used. Representation of a restricted model space by 
the two-slope graphs is not as flexible as by the three- and four-slope graphs. The 
n-level, three-slope graph, describing orbital configurations, was introduced as a side 
projection of a three-dimensional graph (figure 7) .  The three-slope graph is particularily 
convenient for the visualisation of the model spaces (figure S), hiding some of the 
three-dimensional graph complexity. With each configuration we can associate a group 
of basis functions (determinants in this case); functions within that group are classified 
using the M diagram (figure 6). Graphs describing orbital configurations were used 
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previously (Duch and Karwowski 1982) in connection with the branching diagram 
(Pauncz 1979) to describe the basis of spin eigenfunctions. 

The four-slope graph (figure 9), on the other hand, does not ‘hide’ anything, being 
an oblique projection of the three-dimensional graph. The calculation of matrix 
elements is still simple, although the graph itself is rather complex: loop segments are 
counted to find the sign (table 2) while the integral indices are given by that level in 
which the two arcs of a loop segment are not identical. Similar four-slope graphs are 
used in the graphical unitary group approach (Shavitt 1977a, 1978, 1983) for a 
description of spin eigenfunctions (Gelfand basis). Indeed, removing vertices corre- 
sponding to M < 0 values from our four-slope graph we would obtain the Shavitt graph. 

More complicated graphs, with the symmetry-split vertices or different number of 
slopes at each level, may still be useful. However, one should avoid excessive complica- 
tion using either suitably projected graphs or using such technical devices as the index 
vector for selection of the paths. Although fairly flexible selection of configurations 
is possible, the efficiency of a graphical matrix element calculation favours longer, but 
more ‘natural’ bases (from the point of view of a graph). For example, leaving all 
determinants described by the graphs in figures 8 and 9, instead of selecting only those 
which are no more than doubly excited relatively to the three references paths, improves 
the efficiency of matrix element calculation and adds the most important higher excited 
determinants to our basis. If the complete active space method (Roos et a1 1980) is 
followed by the configuration-interaction calculations the graph is composed from a 
large external part attached to the internal part corresponding to the full model space 
with a small number of orbitals-a very good example of the ‘natural’ basis from the 
graphical point of view. 

The wide range of applications and a potential for further development makes the 
graphical representation of model spaces a useful tool in large-scale atomic and 
molecular calculations. 
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Appendix 1. Computer representation of a graph 

The most straightforward way to represent a p-slope graph is to use a matrix of 
dimension n by N ( p +  l),  each vertex represented by its weight and the weights of p 
arcs off this vertex. It is not hard to find a more economical way to represent a graph. 
Let us take the three-slope graph of figure 8 as an example. It has V = 45 vertices that 
we can number from the top down and from left to right in each row. Then a vertex 
( i , j )  has a number ub = B ( i )  +j, calculated with the help of an auxiliary array B( i ) .  
In our example: 

B=[ l ,2 ,3 ,4 ,6 ,9 ,13 ,16 ,19 ,22 ,25 ,28 ,31 ,34 ,35 ] .  

We can represent the graph by three vectors (or, in general, p vectors) each of 
length V, such that yk(ui j ) ,  k = 0, 1, 2, gives the weight of the k-fold occupied arc. At 
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each row i the U, numbers change from U, = B(i)+Jmln(i)  to ull = B(i)+Jma,(i). The 
values of J,,, and JmaX are also stored: 

Jmin = [O, 092,495, 6-79 8 ,8 ,8 ,  8,8,8,8,101 

J,,, = [0,2,4,6,  8, 10, 10, 10, 10, 10, 

The y ,  and y ,  vectors contain the arc weights of singly and doubly occupied arcs. A 
negative value of the arc weight means that this arc does not belong to the graph. The 
yo vector is a special case, because all arc weights of the empty arcs are zero. Therefore 
we need it only to flag the arcs that are removed. Let yo(u,) = iw, , ,  i.e. plus or minus 
the weight of the vl, vertex, where ‘plus’ is taken when the empty arc off vY vertex 
belongs to the graph and ‘minus’ when it does not. If we want to remove a vertex uI, 
that is inside the graph, i.e. J,,,( i )  < j < Jmax(i), we simply put yo(v,) = 0. 

The three auxilary arrays B, J,,,, J,,, (n-dimensional each) and the three vectors 
yo, y , ,  y ,  (V-dimensional each) give a very economical and convenient computer 
representation of a graph. In our example the y k  vectors are 

10, 10, 10, 10, 101. 

yo=[1,-1, -1, 1,-3, -2, 1,-6,3, 1, -9, 10,4, 1,-19, 

23, 15,5, 1, -42, 57,43,21,99, 142, 121,99,241,362,99, 

340,702,99,439,1141, 99,538,1679,99,637, 2316, -99, -736,3052, -38871 

y ,=[O,  -1, 1,0,  -1, l , 0 , 3 ,  1,0, 10,4, 1,0,  23, 

15,5, 1, -1, 57, 43,21, -1, 142, 121, -1,241,362, -1,340, 

702, -1,439,1141, -1, 538,1679, -1,637,2316, -1, -1,3052, -1, -11 

Y2 = [O, 2, 1,0,3,  190,49190, 1495, 130,389 

20,6, -1, -1, 100, 

-1, -1, 1580, -1, -1, 

64, -1, -1,263, -1, -1,603, -1, -1, 1042, 

2217, -1, -1,2953, -1, -1,3788, -1, -1, -11. 

Appendix 2. Searching paths in a graph 

An algorithm to calculate efficiently the lexical indices of the paths connecting two 
given vertices in a graph is of fundamental importance if the matrix elements are 
calculated with the help of a graph. The literature on searching the general graphs is 
extensive (cf Knuth 1973). However, in the case of the p-slope graphs one can find 
more specific and therefore more effective methods to search the paths. Two classes 
of such methods may be distinguished: depth search and breadth search. 

Depth search methods generate the paths one by one; it is natural to represent the 
paths as an array of arcs (or rather, arc types) in this context. Let us take as an example 
the three-slope graph case and suppose that we have two vertices: A = (n,, N,) and 
B = ( nb, Nb) ,  n, < nb and N, S Nb (in the case of a four-slope graph the Ma, Mb values 
are needed in addition). A n  = nb - n, arcs should accomodate AN = Nb - N, electrons. 
The rightmost path is easy to find: it has k2 = Int(AN/2) doubles, where Int takes an 
integer part of a number, and k ,  = AN -2k, singles (at least, because the number of 
singles k ,  3 2M) ,  the rest, i.e. ko = A n  - k ,  - k2,  being empty arcs. Each vertex on a 
path connecting A and B is characterised by a triple [ kh, k ; ,  k ; ] ,  at A equal to [ k,, k , ,  k2] 
and at B equal to [0, 0, 01. Moving from A to the next vertex we have [k , ,  k , ,  k, - 11 
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if we move through the doubly occupied arc, [ ko, k ,  - 1 ,  k,] if through single, and 
[ k , -  1 ,  k , ,  k2] if through unoccupied. Of course we have to check each time if the 
new vertex belongs to the graph and if the new ko, kl ,  k, are not negative. Each time 
we reach B we move back up to the vertex where a new branching is possible. A very 
simple example will illustrate this procedure. Let ko = k ,  = k2 = 1 at the vertex A ;  the 
rightmost path is then 210 and the triples for the vertices belonging to this paths are: 
[k , ,  k , ,  k2] = [ l ,  1 ,  11, [ l ,  1,0], [ l ,  0, 01, [O,O, 01. From B we move back by two arcs 
(occupations) to the vertex with [ l ,  1,0] and this time decrease ko instead of kl ,  so 
that the [ 1 ,  1,0], [0, 1,0], [0, 0,0] sequence follows, corresponding to 201 occupations. 
The last two occupations form the leftmost path, so we back up by three occupations 
to A and decrease k ,  instead of k,  obtaining [ l ,  0, 11 triple, decrease now k2 to get 
[ l ,  O,O], [0, O , O ] ,  i.e. wcupations 120. Moving up by two occupations to [ l ,  0, 11 and 
down to [O,O, 11, [O,O, 01 we get path 102; up to [ l ,  1,  l,], which is reached by increasing 
k ,  we decrease ko to get two more paths: 021 and 012. Finally we take k ,  = k ,  + 2  
and ko = k,  - 1 ,  k,  = k2 - 1 :  [ kl ,  k,, k3] = [0,3,0], giving the 1 1  1 path. This algorithm 
finds the paths with fixed number of singles, which is sometimes an advantage. We 
may store not only [ k,, kl,  k2] triples at each intermediate vertex, but also sums of arc 
weights, etc, so that backing up to a level i' and then branching down partial results 
calculated down to level i' are used. One may define this algorithm recursively in an 
elegant way but it is better to avoid recursion in actual programming. 

The breadth search algorithms, being non-recursive, are somehow easier to describe. 
At each level between n, and n b  one pass is made over the vertices and the arc weights 
are added to the appropriate partial lexical numbers. The leftmost and the rightmost 
paths are easily found; for each level n, s k s nb they give us the leftmost vertex s ( k )  
and the rightmost vertex U,( k )  through which the paths connecting A with B may pass. 
For each vertex between q ( k )  and q ( k )  we form a stack of partial lexical paths 
numbers. At level n , + 1  these numbers are equal to the weights of arcs leading to 
q ( n ,  + l ) ,  . . . , ~ , ( n ,  + 1 ) .  To find the contributions from arcs between a level k and 
k +  1 we simply add all partial lexical paths numbers from a stack corresponding to 
the vertex V k N ' ,  U/( k )  s U k N '  s U,( k ) ,  increased by the weight of an arc joining U k N  vertex 
with a vertex Uk+1 N,,, to the stack of the u k + l  Nt, vertex, for all (at most p )  U k + l  vertices, 
q ( k +  1 )  s U k + l  N , , ~  v , (k+  1)  connected with U k N ' .  Moving systematically from k = 
n,, . . . , n b  - 1 and for each k from U k N ' =  U/( k ) ,  . . . , u , ( k )  we obtain as a result a set 
of lexical indices, ordered from the highest to the lowest, of the paths joining the A 
and B vertices. 

A number of more specialised search algorithms could be formulated, for example 
for full model spaces or one reference caEe, but we shall not describe them here. It 
is worth noticing that, given a lexical index mL of a path terminating at some vertex 
B and starting at the head of the graph, it is very easy to find this path. The weights 
of the arcs connected to B from above decrease with increasing slope. The last arc of 
path L is the one with the maximum weight w s mL. We now take mL, = mL - w and 
move to the new vertex via this arc, finding the maximum weight w' s mL, and repeating 
this procedure until we reach the head of the graph. 
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